Large Neighborhood Search for a rich dynamic VRP with transshipments, backhauls and subcontracting

Andrea Nagel, Giselher Pankratz, Hermann Gehring 26 May 2009 Odysseus 2009

Content

- Background
- Characteristics of the Problem
- Procedure
- Tests and Results
- Further Research

Real-world cooperation

- 4 companies, supplier, food and beverages industry
- Complementary product range; overlapping customer base
- Goods are delivered free
- Own means of transport in several regions (own vehicles)
- Cooperation in Transport Operations Planning
- Goal: virtual full range supplier

Transport Operations Planning

Simultaneous Planning

- Vehicle Routing
- Transshipments
- Direct Delivery

→ Minimize costs

Dynamics

- Decisions under incomplete information due to advance notices
- Flexible reaction to unexpected events
- Rolling horizon
- Sequence of temporary static problems

Backhauls

- Delivery of goods in standardised boxes (E2)
- Empty boxes to be returned \rightarrow Backhauls
- Backhauls only occur with orders served by own vehicles
- Implicit rule: Take as many boxes back, as you brought.
- Violation of this rule leads to explicit backhaul orders
- Explicit backhaul orders must be executed by own vehicles → High priority in scheduling

Procedure

Insertion Heuristic

Input: feasible base plan, new orders, available vehicles

(1) Randomly chose a new order

(2) Chose cheapest feasible insertion for delivery by own means of transport

In case: plan additional transship

 (3) If there is no feasible insertion, plan direct transport by external carrier
(Except backhauls!)

Improvement Strategy

Input:

Start Solution sln_old, Thresholds (T(1),...,T(max_T))

(1) Create new feasible solution sln_new usingLarge Neighborhood Search

(2) **If**

Cost(sln_new) < Cost(sln_old) * (1+T(t)) Then sln_old := sln_new

(3) Repeat until some termination criterion is reached.

Test - Instances

- 10 six-day instances on the basis of real data
- 185 orders, 1 backhaul order per day
- 4 companies,
- 13 company-owned vehicles in 4 regions,
- 3 external carriers:
 - advance notices at 12.30 for transships,
 - advance notices at 18.00 for regular direct transport,
 - expensive variant without advance notice

Parameters

- Scenarios
 - Isolated
 - Cooperative
- Thresholds
 - 0, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0
 - -2, 0, 2, 0, 1, 0, 0.5, 0

- Call for improvement heuristic
 - Continous: Regularly every 10 minutes (54*160 Iterations)
 - "Due-Date": Only when an advance notice is due (3*2880 Iterations)

Isolated vs. cooperative Scenario

	Minimum savings	Maximum savings	Average savings	Average calculation time per instance (cooperative)
Continous planning	19,5%	23,3%	21,6%	164 s
"Due-Date" planning	19,9%	23,6%	21,9 %	300 s

Long Planning before due dates slightly better (-1%) but significantly slower (+40%)

Spread Range of Results

Further Research

- Exploit specific problem knowledge
 - Diversify the objective function during the day
 - Other ideas: relatedness function ...
- Additional dynamic events
 - appropriate reaction
 - e.g. changed orders, traffic jams, break downs
- Comparison of different metaheuristics
- Change to PDP several depots per Region,
- Cost allocation

Thank you for your attention!

FernUniversität in Hagen Dept. of Information Systems

http://icotrans.fernuni-hagen.de/ http:// www.FernUni-Hagen.de/WINF

Andrea Nagel Andrea.Nagel@FernUni-Hagen.de Fon: +49 2331 987 – 4396

Giselher Pankratz (Project manager iCoTrans) Giselher.Pankratz@FernUni-Hagen.de

Prof. Dr. Hermann Gehring Hermann.Gehring@fernuni-hagen.de

Gefördert durch das

Bundesministerium für Wirtschaft und Technologie

